
1

RVC3D - Rotor Viscous Code 3-D
User’s Manual and Documentation
Version 300, November 15, 2000

Dr. Rodrick V. Chima
NASA Glenn Research Center, MS 5-10
21000 Brookpark Road
Cleveland, Ohio 44135 USA

phone: 216-433-5919
fax: 216-433-5802
email: fsrod@grc.nasa.gov
internet: http://www.grc.nasa.gov/WWW/5810/webpage/rvc.htm

Abstract
RVC3D (Rotor Viscous Code 3-D) is a computer code for analysis of three-dimensional viscous flows in turbomachinery.

The code solves the thin-layer Navier-Stokes equations with an explicit finite-difference technique. It is applicable to station-
ary linear cascades or annular blade rows with or without rotation about the x-axis. Two algebraic turbulence models and a
simple tip clearance model are included. The code has been tested on numerous fan and turbine blades and has been used
heavily at NASA Lewis Research Center for fan analysis and design and analysis of turbine endwall heat transfer. The code
may be run on a Cray computer with run times of one to several hours depending on grid size and flow characteristics, or on
workstations with longer run times. This report serves as the user’s manual and documentation for the RVC3D code. The code
and some aspects of the numerical method are described. Steps for code installation and execution are given for both Cray
computers and workstations. The grid, input, and output variables are described in detail.

Introduction
A three-dimensional Navier-Stokes code has been developed for analysis of isolated turbomachinery blade rows. The

code, called RVC3D (Rotor Viscous Code 3-D,) was originally described in (1) where results for a blunt fin problem and an
annular turbine cascade were given, in (2) where results for a transonic fan were given, and in (3) where endwall heat transfer
results were given. These references describe the mathematical formulation of the RVC3D code and should be cited in any
publication resulting from the use of the code. A brief description of the code is given below.

The code solves the Navier-Stokes equations formulated in a Cartesian coordinate system with rotation about the x-axis.
The equations are mapped to a general body-fitted coordinate system. Streamwise viscous terms are neglected using the thin-
layer assumption, but all cross-channel viscous terms are retained. Turbulence effects are modeled using either a 3-D adapta-
tion of the Baldwin-Lomax turbulence model (4) or an adaptation of the Cebeci-Smith model (3). The equations are dis-
cretized using second-order finite-differences and solved using a multistage Runge-Kutta scheme. The user may choose the
number of stages in the scheme, but a four stage scheme is recommended. A spatially-variable time-step and implicit residual
smoothing are used to accelerate convergence. Preconditioning may also be used to accelerate convergence for low-speed
(incompressible) flows.

C-type grids are used to give good resolution of blade leading-edges and wakes (see figure 1.) Grid input is in standard
PLOT3D xyz-file format, so any C-grid generator can be used. However two grid codes have been developed specifically for
use with RVC3D, STACK and TCGRID. STACK reads a 2-D grid generated by the GRAPE code (7), and generates a 3-D grid
for a linear or annular blade row by stacking the 2-D grid spanwise. TCGRID (6) is a general 3-D C- or H-grid generator for

2

turbomachinery. It reads annulus and blade geometry in either MERIDL format or NASA Lewis compressor design code for-
mat. It generates C-type grids at several spanwise locations using a version of the GRAPE code, then reclusters the grids span-
wise.

RVC3D is written completely in Fortran and runs as a batch job on most workstations or mainframe computers. It has
even been run on a PC. Solution times range from one to several hours on a Cray C-90 or usually overnight on workstations,
depending on grid size and flow characteristics.

Namelist input data must be supplied to RVC3D as an ascii dataset. Printed output consists of a residual history, spanwise
profiles of blade-to-blade averaged quantities at the grid inlet and exit, and streamwise profiles of various quantities on the
blade surfaces. No graphical output is provided, but the solution files can be read directly and plotted using the public domain
CFD visualization codes PLOT3D and FAST, or the commercial codes FIELDVIEW and TECPOT.

This documentation briefly describes how the RVC3D code works. Instructions for dimensioning, compiling, and running
RVC3D are given for Silicon Graphics (SGI) workstations and Cray mainframes. The namelist input variables are described in
detail. Finally, the structure of the output file is described.

Numerical Method

Multistage Runge-Kutta Scheme
Multistage schemes were developed by Jameson, Schmidt, and Turkel (8) as a simplification of classical Runge-Kutta

integration schemes for ODE’s. The simplification reduces the required storage, but also reduces the time-accuracy of the
schemes, usually to second order. The following discussion of these schemes should give some guidance in choosing parame-
ters for running the code.

A k-stage scheme may be written as:

where q is an array of five conservation variables (see “Solution Q-File”, pp. 13.), k is the stage count, is the previous time

step, are the multistage coefficients discussed below, is the time step, is the inviscid part of the residual, and is

the viscous part of the residual including the artificial dissipation. Note that is evaluated every stage, but is evaluated

only at the initial stage for computational efficiency.

The maximum stable Courant number for an n-stage scheme can be shown to be . The actual stability limit

depends on the choice of . For consistency must equal 1, and for second-order time accuracy must equal 1/2.

The values of used in the code and the theoretical maximum Courant number are set by a data statement in subroutine
setup and are given in table 1.

q
k

q
0 αk∆t RI

k
RV

0
+()–=

q
0

αk ∆t RI
k

RV
0

RI
k

RV
0

λ* λ*
n 1–=

αk αn αn 1–

αk λ*

.

Table 1 - Runge-Kutta parameters and maximum Courant number for k stage schemes.

k

2 1.2 1. .95

3 .6 .6 1. 1.5

4 .25 .3333 .5 1. 2.8

5 .25 .1667 .375 .5 1. 3.6

α1 α2 α3 α4 α5 λ*

α1 α5
– λ*

3

The number of stages is set with the variable nstg. Using is recommended, although Jameson et. al. tend to
favor 5 stages. The 5-stage scheme in RVC3D is set up to calculate the artificial and physical dissipation every other stage.
This tends to be more robust that the standard 4-stage scheme, but also very expensive. The 5-stage scheme should only be
used if the 4-stage scheme will not run.

A spatially-varying is used to accelerate the convergence of the code. Setting causes the Courant number to
be set to a constant (input variable cfl) everywhere on the grid, and to be recalculated every icrnt iterations. The spatially-vary-
ing option is highly recommended. Set icrnt to a moderate number, e.g. 10, so that the time step is recalculated occasion-
ally. The time step is recalculated when the code is restarted and may cause jumps in the residual if icrnt is too big.

Implicit residual smoothing (described later) may be used to increase the maximum Courant number by a factor of two to
three, thereby increasing the convergence rate as well.

Artificial Viscosity
The code uses second-order central differences throughout and requires an artificial viscosity term to prevent odd-even

decoupling. A fourth-difference artificial viscosity term is used for this purpose. This term is third-order accurate in space and
thus does not affect the formal second-order accuracy of the scheme. The input variable avisc4 scales the fourth-difference
artificial viscosity, and should be set between 0.25 and 2. Start around 1. If the solution is wiggly, increase avisc4 by 0.5. If it
is smooth, try reducing avisc4 by 0.5. Larger values of avisc4 may improve convergence somewhat, but the magnitude of
avisc4 has little effect on predicted losses or efficiency.

The code also uses a second-difference artificial viscosity term for shock capturing. The term is multiplied by a second
difference of the pressure that is designed to detect shocks. Note that the second-difference artificial viscosity is first-order in
space, so that the solution reduces to first-order accurate near shocks. Two other switches developed by Jameson (8) are used
to reduce overshoots around shocks. The input variable avisc2 scales the second difference artificial viscosity, and should be
set between 0. and 2. Use 0. for purely subsonic flows, and start with 1. for flows with shocks. If shocks are wiggly, increase
avisc2 by 0.5. If they are smeared out, try decreasing avisc2 by 0.5. Shocks will be smeared over four or five cells regardless of
the value of avisc2. The magnitude of avisc2 also has little effect on predicted loss or efficiency.

Eigenvalue scaling described in (2) is used to scale the artificial viscosity terms in each grid direction. This greatly
improves the robustness of the code. The artificial viscosity is also reduced linearly by grid index near walls to reduce its effect
on the physical viscous terms. Input variables jedge, kedgh, and kedgt are the indices where the linear reduction begins.

A first-order artificial viscosity term may be added to smooth the solution drastically during solution start-up. The variable
avisc1 scales this term. First-order artificial viscosity will greatly improve the convergence rate while greatly diminishing the
accuracy of the solution. It will thicken boundary layers, smear shocks, and greatly increase predicted loss. Do not use first-
order artificial viscosity except to start a new solution. A warning is printed in the output when .

Implicit Residual Smoothing
Implicit residual smoothing was introduced by Lerat in France and popularized by Jameson in the U.S. as a means of

increasing the stability limit and convergence rate of explicit schemes. The idea is simple: run the multistage scheme at a high,
unstable Courant number, but maintain stability by smoothing the residual occasionally using an implicit filter. The scheme
can be written as follows:

where are constant smoothing coefficients in the three body-fitted coordinate directions indicated in

figure 2. Here is a second-difference operator, is the smoothed residual, and R is the unsmoothed residual.
It can be shown that if the scheme converges implicit residual smoothing does not change the solution. Linear stability

theory shows that the scheme can be made unconditionally stable if is big enough, but also shows that the effects of the arti-

ficial viscosity are diminished as the Courant number is increased. In practice the best strategy seems to be to double or triple
the Courant number of the unsmoothed scheme. If the residual is smoothed after every stage, the theoretical 1-D values of

needed for stability are given by:

nstg 4=

∆t ivdt 1=

∆t

avisc1 0>

1 εξδξξ–() 1 εηδηη–() 1 εςδςς–()R R=

εε εη and ες, , ε η and ς, ,

δ R

εi

εi

εi
1
4
--- λ

λ*

 2
1–≥

4

where is the Courant limit of the unsmoothed scheme (given in the previous table,) and is the larger operating Courant

number. For example, to run a four-stage scheme at a Courant number , the smoothing coefficient should be:

A single variable is input to RVC3D. The 1-D limit given above usually gives a reasonable estimate for , but

the code will converge best when is minimized. Values of are evaluated at each grid point within the code by

scaling eps using the same Eigenvalue scaling coefficients used for the artificial dissipation. This has proven to be quite robust.
In rare cases it may be necessary to increase the residual smoothing coefficient in a particular direction. This can be

accomplished using input variables epi, epj, and epk, which are constants (usually 1.) that multiply at each point.

Implicit residual smoothing involves a scalar tridiagonal inversion for each variable along each grid line in each direction.
It adds about 20 percent to the cpu time when applied after each stage. Smoothing can be done after every other stage to reduce
cpu time (about 7 percent,) but eps must be increased (approximately doubled.)

Recommended starting values are: , , , and . If the code blows up quickly try
increasing eps to 1.5. Very large values of eps (e.g. > 3) may stabilize a stubborn calculation but prevent the residuals from
decreasing. If the residuals drop a little then climb to a large, constant value, eps is probably too big and the solution is proba-
bly incorrect.

Preconditioning
Density-based schemes like RVC3D solve the continuity equation by driving the density residual to zero. For low speed

(nearly incompressible) flows the density residual is naturally near zero, and the schemes fail to converge. Preconditioning,
described by Turkel in ref. (5) improves the convergence rate in two ways. First, it replaces the q-variables

with variables that are better-behaved at low speeds , where p is the pressure
and h is the total enthalpy. Second it multiplies the equations by a matrix designed to equalize the wave speeds of each equa-
tion. The preconditioning matrix has the local flow velocity in the denominator and must be limited when the velocity becomes
small. The preconditioning operator is designed so that it has no effect on the steady-state solution.

Preconditioning works extremely well for the Euler equations and less well for the Navier-Stokes equations. It will allow
solutions at very low speeds that simply would not work otherwise.

λ* λ
λ 5.6=

εi
1
4
--- 5.6

2.8

 2
1–≥ 0.75=

eps ε= ε
ε εε εη and ες, ,

εi

nstg 4= cfl 5.6= irs 1= eps 0.75=

q ρ ρu ρv ρw e,, ,,[]= W p ρu ρv ρw h,, ,,[]=

5

Compiling and Running RVC3D
RVC3D is supplied as a unix script which generates the source and include files and compiles them. The format of the

script file is shown below.

#! /bin/csh -f
cat > rvc3d.f << ‘/eof’
#RVC3D source code goes here
‘/eof’
#---
cat > noncray << ‘/eof’
#two replacements for Cray-specific routines go here
‘/eof’
#---
cat > csca << /eof
#scalar common block goes here
eof
#---
#other common blocks follow
#---
cat > param << /eof
#code dimensioning parameters go here
 parameter(ni=165,nj=34,nk=33)
/eof
#---

#compiler commands with options go here
/bin/rm...

On a unix platform, edit the script and go to the bottom. Change the parameter statements to values greater than or equal
to the size of the grid to be run. (See Parameter Statements below.) Comment, uncomment, or add compilation commands
appropriate for the computer to be used. (See below for compilation commands for SGI and Cray computers.) Save the script,
set execute permission, and execute it.

On a PC, manually strip out, save, and compile the files between the cat and /eof commands.

Parameter Statements
RVC3D uses a parameter statement to make redimensioning simple. The parameter statement and labeled common

blocks are inserted during compilation using Fortran include statements. A typical parameter statement is shown above. Actual
parameter values may be different in the distribution code. RVC3D checks the user input against the dimensioning parameters
and stops with a fatal error message if the code is not dimensioned properly.

For a C-grid dimensioned , the dimension parameters must have , , and . The
j-direction requires an extra line of storage for a dummy grid line used in RVC3D to implement the periodic boundary condi-
tions.

Thirty variables are stored at each grid point. Thus the computer memory required to run RVCQ3D is
words for arrays, plus about 200K words for the executable code.

Compiling RVC3D on Silicon Graphics Workstations (IRIX)
The following commands can be used to compile RVC3D on various SGI workstations:

#SGI power series compiler
f77 -pfa -O2 -lfpe -o rvc3d rvc3d.f
strip rvc3d

#SGI R8000 CPU
f77 -O3 -mips4 -WK,-o=0,-so=2,-ro=0 -OPT:round=3:IEEE_arith=3 \
-lfastm -o rvc3d rvc3d.f noncray.f

im jm km, ,() ni im≥ nj jm 1+≥ nk km≥

30 ni nj×× nk×

6

strip rvc3d

#SGI R4000 CPU (Indigo 2)
f77 -O2 -sopt -mips2 -lfpe -o rvc3d rvc3d.f
strip rvc3d

Compiling RVC3D on Cray Research Computers (UNICOS)
The following command will compile RVC3D on a Cray Y-MP or C-90:

cf77 -Zc -Wf”-o aggress -M367 -es” -o rvc3d rvc3d.f

The -es option produces a compiler listing, and the -M367 option omits the include statements from the listing. RVC3D will
autotask (run on multiple processors) on a Cray when compiled as follows:

cf77 -Zu -o rvc3d rvc3d.f

Running RVC3D
The executable program is run as a standard unix process:

rvc3d < std_input > std_output &

Standard Input, Output, and Binary Files
An ascii input file for RVC3D is read from Fortran unit 5 (standard input.) Printed output from RVC3D is written to For-

tran unit 6 (standard output.) Binary files linked to Fortran units 1-3 may be used in the execution of RVC3D, depending on
input options. The units are used as follows:

fort.1 input grid file (see “Grid XYZ-File” pp. 13), required
fort.2 input solution file (see “Solution Q-File” pp. 13), read if

fort.3 output solution file (see “Solution Q-File” pp. 13), written if

All files are treated as unformatted binary files. They are not explicitly opened in the code. Files are usually linked to file
names before running RVC3D,

ln input.grid.file fort.1
ln input.solution.file fort.2
ln output.solution.file fort.3

Binary grid files can be used immediately on the same type of computer on which they were generated. Files generated on
an SGI machine can be read into PLOT3D using the read /unformatted option. Files generated on a Cray can be converted to
SGI format in one of two ways:

1. By using the itrans command at NASA Ames or the irisbin command at NASA Lewis to convert the files to SGI binary.
Files converted using itrans or irisbin can be read into PLOT3D using the read /binary option <default>.

itrans file.xyz file.SGI.xyz
irisbin -u -v file.xyz file.SGI.xyz

2. By assigning the files as 32 bit ieee binary files on the Cray before execution. The lower precision does not affect the
accuracy of RVC3D. Files written on a Cray while assigned as ieee binary can be used directly on an SGI machine and can be
read into PLOT3D using the read /unformatted option.

assign -F f77 -N ieee fort.1
assign -F f77 -N ieee fort.2
#etc.

iresti 1=

resto 1=

7

RVC3D Input
Defaults are given in angle brackets, <Default=value> or <default.> If no default is given the value MUST be input.

Title

ititle An alphanumeric string of 80 characters or less printed to the output. The character string must be enclosed
in single quotes. The following FORTRAN input statement is used to read ititle:

 read *,ititle

&nam1 - Grid Size Parameters

im Grid size in i- (streamwise) direction. Must agree with im read from the grid file. The code must be dimen-
sioned with .

jm Grid size in j- (blade-to-blade) direction. Must agree with jm read from the grid file. The code must be
dimensioned with to allow for a dummy grid line added internally to implement the periodic
boundary conditions.

km Grid size in k- (spanwise) direction. Must agree with km read from the grid file. The code must be dimen-
sioned with .

itl i-index of lower trailing-edge point on a C-grid. itl is printed in the TCGRID output. itl can be 1 for a blade
that extends to the exit of the grid.

iil i-index of the last periodic point on the outer boundary. Also acts as the lower point on the inlet boundary. iil
is printed in the TCGRID code output.

ktip k-index of the blade tip. Tip clearances are modeled in RVC3D by forcing the flow to be periodic across the
blade thickness for k > ktip. ktip should be chosen as the grid line closest to the actual blade tip. ktip can be
determined from the TCGRID output or from the RVC3D spanwise output. < 0 disables the clearance
model>

&nam2 - Algorithm Parameters

nstg Number of stages for the Runge-Kutta scheme, usually 4, but can be 2-5. <4>

cfl Courant number, typically 5.6 (see “Multistage Runge-Kutta Scheme” pp. 2.) If , cfl is the maxi-

mum Courant number, usually located somewhere near the leading edge at the blade surface. If ,
the Courant number will equal cfl everywhere. <5.>

avisc1 First-order artificial dissipation coefficient. Usually 0., but can be used to stabilize a solution that blows up at
startup. Set for the first 50 or so iterations if necessary, but be sure to set as soon
as the solution is running stably. (see “Artificial Viscosity”, pp. 3..) <0.>

avisc2 Second-order artificial dissipation coefficient. Typically 0. - 2. Use 0. for purely subsonic flow or 1. for
flows with shocks. <0.5.>

avisc4 Fourth-order artificial dissipation coefficient. Typically 0.25 - 1.5. Start at 1.0 and reduce avisc4 to 0.5 if
possible. <0.5.>

irs Implicit residual smoothing flag. Usually = 1. (see “Implicit Residual Smoothing”, pp. 3.)

= 0 No residual smoothing

= 1 Implicit smoothing after every Runge-Kutta stage <default.>

= 2 Implicit smoothing after every other stage. eps must be increased for this option to work.

eps Overall implicit smoothing coefficient based on the 1-D stability limit (see “Implicit Residual Smoothing”,
pp. 3.) RVC3D will calculate the 1-D limit if eps is defaulted.

ni im>

n j jm 1+>

nk km>

ivtstp 0=

ivtstp 1=

avisc1 1.= avisc1 0.=

8

epi, epj, epk Implicit smoothing coefficient multipliers for the i, j, and k directions. (see “Implicit Residual Smoothing”,
pp. 3.) Rarely used. <1.>

itmax Number of iterations, typically 50-1000 per run, but 1000-3000 may be needed for a converged solution.

ivdt Variable time step flag.

= 0 Spatially constant time step.

= 1 Spatially variable time step. <default, highly recommended>

ipc Preconditioning flag, (see “Preconditioning” pp. 4.)

= 0 No preconditioning. <default>

= 1 Preconditioning using the Merkel, Choi, Turkel scheme. Should give a substantial speedup for Mach
numbers < 0.3.

= 2 Solves the equations using the preconditioning variable set, but sets the preconditioning matrix to the
identity matrix. Used to debug the preconditioning routines.

pck Constant limiter (Turkel’s parameter k) for preconditioning. The denominator in the preconditioning matrix

is limited to be > . Typically 0.1 - 0.3, but larger values may be necessary for stability. <0.15>

refm Reference relative Mach number used to find described above. Should be approximately the largest

Mach number expected in the flow. If the code blows up, try increasing refm by 0.1. Convergence is mildly
sensitive to refm and pck, so try to keep these values as small as possible. <emxx>

&nam3 - Boundary Condition & Code Control

ibcin Inlet boundary condition flag. In all cases and v or are fixed at the inlet. For subsonic flow a Rie-

mann invariant is extrapolated from the interior and ibcin determines how u and w (for linear geometries) or
 (for annular geometries) are determined.

= 1 The inflow is aligned with the meridional grid direction. <default>

= 2 Supersonic inflow - all quantities are fixed at the inlet.

= 3 The ratio of w/u (or) is specified.

= 4 w or is specified directly.

ibcex Exit boundary condition flag. Four primitive variables are extrapolated to the exit. ibcex determines how the
pressure prat is determined.

= 1 prat is specified as a constant. Only applicable to linear geometries or annular with zero swirl or radial
outflow.

= 2 Supersonic outflow. p is extrapolated to the boundary.

= 3 prat is specified at the hub exit. The spanwise variation of is found by solving radial equilibrium. is
constant blade-to-blade. <default>

= 4 prat is specified at the hub exit. The spanwise variation of is found by solving radial equilibrium. p is

found as a perturbation about using a characteristic boundary condition developed by Giles.

= 5 For linear geometries only, is set at all spanwise locations, and p is found as a perturbation about
using a characteristic boundary condition developed by Giles.

isymt Top-plane symmetry flag. Used to model the bottom half of a linear cascade with bottom-to-top symmetry.

= 1 Symmetry condition on k = km.

pck q'ref
2×

q'ref

P0 T 0, vθ

vr

vr u⁄

vr

p p

p

p

p p

9

else Solid wall boundary condition on k = km. <default>

kbcorder Flag for order of accuracy used in endwall boundary conditions. Typically 2 (second order), but it is some-
times necessary to use 1 (first order) if points decouple spanwise. This usually only happens on linear geom-
etries with unstretched spanwise grids. <2>

ires Iteration increment for writing residuals in the output file. Typically 10. If the code is blowing up, set
 to print the size and location of the maximum residual at each iteration

icrnt Iteration increment for updating the time step. Typically 50. If icrnt is very large, the residual history may be
discontinuous where is recalculated, especially at restarts. <50>

iresti Read input restart file flag. Restart files are in PLOT3D format in the relative frame.

= 1 Read restart file from unit 2.

else No action taken. <default>

iresto Write output restart file flag.
= 1 Write restart file to unit 3. <default>
else No action taken.

iqin Inlet condition flag.

= 0 Inlet conditions are calculated by subroutine qincalc based on input values emxx, emty, dblh, etc. The
code calculates inlet profiles using the current input values, so the inlet profiles can be changed at

restart if desired.

= 1 Inlet q-file read from unit 4. Used mainly to read an exit profile from a solution of an upstream blade
row. The file is read as follows:

 read(4,*)kin
 do 10 k=1,kin
 10 read(4,*)dum,r(k),(qin(l,k),l=1,5)

Here kin is the number of spanwise points, dum is a dummy variable, r(k) is the radius, and qin(l,k) are the
five nondimensional conservation variables at that radius as described in “Solution Q-File” pp. 13, except
that the absolute velocities are stored.

mioe Mass flow output flag for residual history. For transonic fans the inflow may respond slowly to a change in
back pressure, so the inlet mass flow can be monitored for convergence. For turbines the inflow may choke
quickly so the outflow can be monitored. In general the mass flow error is a good measure of convergence
and accuracy and should converge to a fraction of a percent (e. g., < 0.003).

= 1 Inlet mass flow history is written.

= 2 Exit mass flow history is written.

= 3 Mass flow error is written. <default>

&nam4 - Flow Parameters

igeom Linear cascade or annular blade row flag.

= 0 Linear cascade.

= 1 Annular blade row <default.>

ga Ratio of specific heats γ. <1.4 for air>

om Normalized blade row rotational speed, , where Ω is the wheel speed in radians per second, and c0 has

dimensions of [grid units/sec], giving om dimensions of [1/grid units]. The (x,y,x) coordinate system is right-
handed, and Ω is positive in the positive x-direction. Ω is negative for most Lewis geometries. <0.>

ires 1=

∆t

P0and T 0

1 ṁout ṁin⁄–

Ω c0⁄

10

prat Ratio of the hub exit static pressure to the reference total pressure, .

emxx Nominal inlet midspan Mach number in the x or axial direction. Used for initial conditions, but u may vary
with the solution for subsonic inflow.

emty Nominal inlet midspan absolute Mach number in the y or θ direction. The sign on emty must be consistent
with the sign on om. Used for initial conditions. Inlet values of v or will stay constant. <0.>

emrz Nominal inlet midspan Mach number in the z or radial direction. Used for initial conditions. Inlet values of w
or may vary with the solution for subsonic inflow. <0.>

expt Exponent used to specify the inlet whirl distribution:

= 0 gives uniform except within the endwall boundary layer. <default>

= -1 gives free vortex inflow.

= 1 gives forced vortex inflow.

 alex Exit absolute flow angle [deg]. Used for initial conditions only. <0.>

&nam5 - Viscous Parameters

ilt Inviscid, Laminar, or Turbulent analysis.

= 0 Inviscid. The remaining viscous parameters are not used if ilt=0.

= 1 Laminar.

= 2 Turbulent using the Baldwin-Lomax turbulence model. <default>

= 3 Turbulent using the Cebeci-Smith turbulence model. This model works well for turbine heat transfer
(ref. 3) but may overpredict losses for transonic compressors.

renr Reynolds number per unit length based on reference conditions, . Must have units of

. Generally much larger that a conventional ``free-stream'' Reynolds number. For example,
for standard conditions:

prnr Prandtl number. <0.7 for air>

tw Normalized wall temperature, .

= 0 Adiabatic wall boundary conditions are used.

= 1 .

else .

vispwr Exponent for laminar viscosity power law. <default = 0.667 for air>

prat phub exit P0⁄=

vθ

vr

Mθ emty r rmid⁄() texp
=

Mθ

renr ρ0c0 µ0⁄=

1 grid units⁄[]

renr 0.002376˙
lb f sec

2

ft
4

1116.7
ft

sec

 3.99
7–×10⁄×

lb f sec
2

ft
2

=

6.65
6×10 ft⁄=

tw T wall T 0⁄=

T wall T 0=

T wall tw=

µ µ0⁄ t t0⁄()vispwr
=

11

prtr Turbulent Prandtl number. <0.9>

cmutm Value of at which transition is assumed to occur. Baldwin and Lomax recommend 14. Can be

increased to move transition downstream or vice-versa. If cmutm = 0, the flow is fully turbulent. <14.>

hrough Surface roughness height in turbulent wall units . Implemented in both the Baldwin-Lomax model (ilt=2)

and the Cebeci-Smith model (ilt=3) using the Cebeci-Chang roughness model. gives a hydrau-
lically-smooth surface.

jedge j-index where the artificial viscosity begins to ramp off near the blade. Also the last j-index searched for the
blade turbulent length scale. For the Baldwin-Lomax turbulence model , jedge should be a grid line
slightly bigger than the largest expected blade boundary layer. For the Cebeci-Smith turbulence model

, jedge should be a grid line slightly bigger than half the largest expected blade boundary layer.
<10>

kedgh, kedgt k-indices where the artificial viscosity begins to ramp off near the hub and tip. Also the last k-indices
searched for the hub and tip turbulent length scales. See comments for jedge. <10>

iltin Flag controlling inlet T0 and P0 profiles.

= 0 Inviscid.

= 1 Laminar.

= 2 Turbulent using Cole's wall-wake profile. <default>

dblh, dblht Inlet hub and tip boundary layer thicknesses in grid units.

srtip Stationary or Rotating tip.

= 0 Stationary. <default>

= 1 Rotating.

xrle, xrte Axial locations at which the hub starts and stops rotating, for modeling a rotating blade disk. Rotational
boundary conditions are applied on the hub for . Stationary conditions are applied else-

where. Set to make the entire hub rotate. Note that xrle and xrte may not be suf-

ficient to locate the rotating part of the disk in a radial flow machine.

&nam6 - Output Control

nko Number of k-indices for blade surface output, max = 50. <0>

ko Array of nko k-indices separated by commas where blade surface output is desired.

µturb µlam⁄

h
+

hrough 4≤

ilt 2=()

ilt 3=()

xrle x xrte< <
xrle xinletand< xrte xexit>

12

RVC3D Output
Printed output from RVC3D is written to Fortran unit 6 (standard output.) The output is divided into several sections. The

sections are commonly separated using an editor and plotted using any x-y plotting package that can read ascii column data.

1. The input variables are echoed back for reference, and any comments or warnings regarding the input are given.

2. Spanwise profiles of flow variables are given at the inlet or exit. These variables are either based on the
initial guess or on a restart file, depending on how the code is started. The initial profiles are often useful for identifying
grid lines near endwall boundary layers.

3. A convergence history gives maximum and RMS residuals of density, and exit flow properties versus iteration.

4. Spanwise profiles of flow variables are repeated at the inlet and exit for the new solution. An approximate
energy-averaging scheme is used. It gives a local representation of the average flow, not a mixed-out average.

5. Blade surface profiles of various quantities are given on selected k grid lines (spanwise locations.) Values of for the
first grid point are given for checking turbulent grid spacing, and maximum values of are given to identify transition
points.

θ averaged–

θ averaged–

y
+

µT

13

Appendix - File Descriptions

Grid XYZ-File
Grids are stored using standard PLOT3D xyz-file structure. Grids can be read with the following Fortran code:

c read grid coordinates
 read(1)im,jm,km
 read(1)(((x(i,j,k),i=1,im),j=1,jm),k=1,km),
 & (((y(i,j,k),i=1,im),j=1,jm),k=1,km),
 & (((z(i,j,k),i=1,im),j=1,jm),k=1,km)

Solution Q-File
Solution files are stored in standard PLOT3D q-file structure. Solution files can be read with the following Fortran code:

c read q-file
 read(2)im,jm,km
 read(2)eminf,aldeg,renr,time
 read(2)((((qq(l,i,j,k),i=1,im),j=1,jm),k=1,km),l=1,5)

c additional geometry data and residual history
 read(2)itl,iil,phdeg,ga,om,nres,igeom,dum,dum,dum
 read(2)((resd(n,l),n=1,nres),l=1,5)

For linear geometries the q-variables are:

For annular geometries the relative velocities are stored:

Non-Dimensionalization
The grid xyz-file may be input in arbitrary units of length. The input parameters to RVC3D and the output q-file are strictly

nondimensional, with the exception of lengths which must be input in the same units as the grid.
All quantities are nondimensionalized by an arbitrary reference stagnation state defined by total density and total sonic

velocity . A reference viscosity is defined by the stagnation temperature . Standard conditions are often

used for the reference state, but any self-consistent state may be used as long as the units of length are consistent with the grid
units. The reference state is not necessarily the inlet state.

For input and output, pressures and temperatures are nondimensionalized by P0 and T0. Within the code, pressures are

usually nondimensionalized by .

Four input parameters must be properly nondimensionalized: renr, om, prat, and tw (see “RVC3D Input”, pp. 7.)

ql ρ ρu ρv ρw e, ,,,[]=

e ρ CvT
1
2
---ρ u

2
v

2
w

2
+ +()+

 =

ql ρ ρu ρvθ' ρvr' e, ,,,[]=

e ρ CvT
1
2
---ρ u

2
vθ

2
vr

2
+ +()+

 =

ρ0

c0 µ0 T 0 c0
2 γR()⁄=

ρ0c0
2 ϒP0=

14

References

1. Chima, R. V., Yokota, J. W., “Numerical Analysis of Three- Dimensional Viscous Flows in Turbomachinery,” AIAA J.,
Vol. 28, No. 5, May 1990, pp. 798-806.

2. Chima, R. V., “Viscous Three-Dimensional Calculations of Transonic Fan Performance,” in CFD Techniques for Pro-
pulsion Applications, AGARD Conference Proceedings No. CP-510, AGARD, Neuilly-Sur-Seine, France, Feb. 1992,
pp 21-1 to 21-19. Also NASA TM-103800.

3. Chima, R. V., Giel, P. W., and Boyle, R. J., “An Algebraic Turbulence Model for Three-Dimensional Viscous Flows,” in
Engineering Turbulence Modeling and Experiments 2, Rodi, W. and Martelli, F. editors, Elsevier pub. N. Y., 1993, pp.
775-784. Also NASA TM-105931.

4. Baldwin, B. S., and Lomax, H., “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows,”
AIAA Paper 78-257, Jan. 1978.

5. Turkel, E., “A Review of Preconditioning Methods for Fluid Dynamics,” Applied Numerical Mathematics, Vol. 12,
1993, pp. 257-284.

6. Chima, R. V., “TCGRID 3-D Grid Generator for Turbomachinery - User’s Manual and Documentation,” Oct. 1996,
available from the author.

7. Sorenson, R. L., “A Computer Program to Generate Two- Dimensional Grids About Airfoils and Other Shapes by Use
of Poisson’s Equation,” NASA TM-81198, 1980.

8. Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the Euler Equations by Finite Volume Methods
Using Runge-Kutta Time-Stepping Schemes,” AIAA Paper 81-1259, June 1981

15

ζ, k

η, j

ξ, i

j = 1

j = jm

i = iil

k = km

k = 1

i = itl i = im

i = 1

x

y

z

Ω (+)

Figure 2 — Body-fitted coordinate system and index conventions for a turbine vane grid.

Figure 1 —Three-dimensional C-grid for a turbine vane.

